1 | |
---|
2 | /* file POLFILTR.C |
---|
3 | * ========== |
---|
4 | * |
---|
5 | * version 8, 22-May-2006 |
---|
6 | * |
---|
7 | * polarisation filter of seismhandler |
---|
8 | * K. Stammler, 7-APR-91 |
---|
9 | */ |
---|
10 | |
---|
11 | |
---|
12 | /* |
---|
13 | * |
---|
14 | * SeismicHandler, seismic analysis software |
---|
15 | * Copyright (C) 1992, Klaus Stammler, Federal Institute for Geosciences |
---|
16 | * and Natural Resources (BGR), Germany |
---|
17 | * |
---|
18 | * This program is free software; you can redistribute it and/or modify |
---|
19 | * it under the terms of the GNU General Public License as published by |
---|
20 | * the Free Software Foundation; either version 2 of the License, or |
---|
21 | * (at your option) any later version. |
---|
22 | * |
---|
23 | * This program is distributed in the hope that it will be useful, |
---|
24 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
25 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
26 | * GNU General Public License for more details. |
---|
27 | * |
---|
28 | * You should have received a copy of the GNU General Public License |
---|
29 | * along with this program; if not, write to the Free Software |
---|
30 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
---|
31 | * |
---|
32 | */ |
---|
33 | |
---|
34 | |
---|
35 | #include <stdio.h> |
---|
36 | #include <string.h> |
---|
37 | #include <math.h> |
---|
38 | #include "basecnst.h" |
---|
39 | #include BC_SYSBASE |
---|
40 | #include "shconst.h" |
---|
41 | #include "mxusrdef.h" |
---|
42 | |
---|
43 | |
---|
44 | #define COVMTXLTH 6 |
---|
45 | /* length of covariance matrix array */ |
---|
46 | #define XX 0 |
---|
47 | #define YY 1 |
---|
48 | #define ZZ 2 |
---|
49 | #define XY 3 |
---|
50 | #define YZ 4 |
---|
51 | #define XZ 5 |
---|
52 | /* index names of covariance matrix */ |
---|
53 | |
---|
54 | typedef REAL COVMTX[COVMTXLTH]; |
---|
55 | /* covariance matrix */ |
---|
56 | |
---|
57 | /* prototypes of local routines */ |
---|
58 | static void pf_addcm( COVMTX a, COVMTX b ); |
---|
59 | static void pf_subcm( COVMTX a, COVMTX b ); |
---|
60 | static void pf_clrcm( COVMTX a ); |
---|
61 | static void pf_buildcm( REAL x, REAL y, REAL z, COVMTX a ); |
---|
62 | static void pf_evalcm( COVMTX c, REAL *l1, REAL *l2, REAL *l3 ); |
---|
63 | static void pf_calccm( REAL x[], REAL y[], REAL z[], long li, |
---|
64 | long hi, COVMTX c ); |
---|
65 | static void pf_diagcm( COVMTX c, REAL l[MXC_DIM], |
---|
66 | REAL trafo[MXC_DIM][MXC_DIM], int *big, STATUS *status ); |
---|
67 | |
---|
68 | |
---|
69 | |
---|
70 | /*-----------------------------------------------------------------------*/ |
---|
71 | |
---|
72 | |
---|
73 | |
---|
74 | void pf_filter( REAL xi[], REAL yi[], REAL zi[], REAL xo[], |
---|
75 | REAL yo[], REAL zo[], long lth, int n, REAL p, int cmreset ) |
---|
76 | |
---|
77 | /* filters 3-dim seismogram (x,y,z) |
---|
78 | * |
---|
79 | * parameters of routine |
---|
80 | * REAL xi[], yi[], zi[]; input; 3-dim input seismogram |
---|
81 | * REAL xo[], yo[], zo[]; output; filtered 3-dim seismogram |
---|
82 | * long lth; input; length of traces |
---|
83 | * int n; input; coherence length |
---|
84 | * REAL p; input; exponent of filter factor |
---|
85 | * int cmreset; input; the covariance matrix is |
---|
86 | * recomputed after cmreset steps |
---|
87 | */ |
---|
88 | { |
---|
89 | /* local variables */ |
---|
90 | long li, hi, mi; /* sample counter */ |
---|
91 | COVMTX cm; /* covariance matrix */ |
---|
92 | COVMTX lm; /* current matrix */ |
---|
93 | REAL l1, l2, l3; /* eigenvalues */ |
---|
94 | REAL fac; /* filter factor */ |
---|
95 | |
---|
96 | /* executable code */ |
---|
97 | |
---|
98 | pf_clrcm( cm ); |
---|
99 | for (li=(-n),hi=0; li<lth; li++,hi++) { |
---|
100 | if (li >= 0) { |
---|
101 | pf_buildcm( xi[li], yi[li], zi[li], lm ); |
---|
102 | pf_subcm( cm, lm ); |
---|
103 | } /*endif*/ |
---|
104 | if (hi < lth) { |
---|
105 | pf_buildcm( xi[hi], yi[hi], zi[hi], lm ); |
---|
106 | pf_addcm( cm, lm ); |
---|
107 | } /*endif*/ |
---|
108 | mi = (li+hi)/2; |
---|
109 | if (mi >=0 && mi < lth) { |
---|
110 | if ((mi+1) % cmreset == 0) /* recompute cm to avoid */ |
---|
111 | pf_calccm( xi, yi, zi, li>(-1) ? li+1 : 0, /* roundoff */ |
---|
112 | hi<lth ? hi : lth-1, cm ); |
---|
113 | pf_evalcm( cm, &l1, &l2, &l3 ); |
---|
114 | if (l1 > SHC_EPSILON) { |
---|
115 | fac = 1. - l2/l1; |
---|
116 | if (p != 1.) fac = pow(fac,p); |
---|
117 | xo[mi] = xi[mi]*fac; |
---|
118 | yo[mi] = yi[mi]*fac; |
---|
119 | zo[mi] = zi[mi]*fac; |
---|
120 | } else { |
---|
121 | xo[mi] = 0.; |
---|
122 | yo[mi] = 0.; |
---|
123 | zo[mi] = 0.; |
---|
124 | } /*endif*/ |
---|
125 | } /*endfor*/ |
---|
126 | sy_sharecpu(); |
---|
127 | } /*endfor*/ |
---|
128 | |
---|
129 | } /* end of pf_filter */ |
---|
130 | |
---|
131 | |
---|
132 | |
---|
133 | /*-----------------------------------------------------------------------*/ |
---|
134 | |
---|
135 | |
---|
136 | |
---|
137 | void pf_vecfilter( REAL xi[], REAL yi[], REAL zi[], REAL xo[], |
---|
138 | REAL yo[], REAL zo[], long lth, int n, REAL p, int cmreset, STATUS *status ) |
---|
139 | |
---|
140 | /* filters 3-dim seismogram (x,y,z) |
---|
141 | * |
---|
142 | * parameters of routine |
---|
143 | * REAL xi[], yi[], zi[]; input; 3-dim input seismogram |
---|
144 | * REAL xo[], yo[], zo[]; output; filtered 3-dim seismogram |
---|
145 | * long lth; input; length of traces |
---|
146 | * int n; input; coherence length |
---|
147 | * REAL p; input; exponent of filter factor |
---|
148 | * int cmreset; input; the covariance matrix is |
---|
149 | * recomputed after cmreset steps |
---|
150 | * STATUS *status; output; return status |
---|
151 | */ |
---|
152 | { |
---|
153 | /* local variables */ |
---|
154 | long li, hi, mi; /* sample counter */ |
---|
155 | COVMTX cm; /* covariance matrix */ |
---|
156 | COVMTX lm; /* current matrix */ |
---|
157 | REAL fac; /* filter factor */ |
---|
158 | REAL l[MXC_DIM]; /* eigenvalues */ |
---|
159 | REAL evec[MXC_DIM][MXC_DIM]; /* eigenvectors */ |
---|
160 | int big; /* index of biggest eigenvalue */ |
---|
161 | REAL nvec[MXC_DIM]; /* normalized eigenvector of biggest value */ |
---|
162 | REAL norm; /* normalization constant */ |
---|
163 | |
---|
164 | /* executable code */ |
---|
165 | |
---|
166 | pf_clrcm( cm ); |
---|
167 | for (li=(-n),hi=0; li<lth; li++,hi++) { |
---|
168 | if (li >= 0) { |
---|
169 | pf_buildcm( xi[li], yi[li], zi[li], lm ); |
---|
170 | pf_subcm( cm, lm ); |
---|
171 | } /*endif*/ |
---|
172 | if (hi < lth) { |
---|
173 | pf_buildcm( xi[hi], yi[hi], zi[hi], lm ); |
---|
174 | pf_addcm( cm, lm ); |
---|
175 | } /*endif*/ |
---|
176 | mi = (li+hi)/2; |
---|
177 | if (mi >=0 && mi < lth) { |
---|
178 | if ((mi+1) % cmreset == 0) /* recompute cm to avoid */ |
---|
179 | pf_calccm( xi, yi, zi, li>(-1) ? li+1 : 0, /* roundoff */ |
---|
180 | hi<lth ? hi : lth-1, cm ); |
---|
181 | pf_diagcm( cm, l, evec, &big, status ); |
---|
182 | if (Severe(status)) return; |
---|
183 | if (l[big] > SHC_EPSILON) { |
---|
184 | /* eigenvector is evec[i][big], i=0,1,2 */ |
---|
185 | /* normalize eigenvector */ |
---|
186 | norm = sqrt( evec[0][big]*evec[0][big] + |
---|
187 | evec[1][big]*evec[1][big] + evec[2][big]*evec[2][big] ); |
---|
188 | if (norm > SHC_EPSILON) { |
---|
189 | nvec[0] = fabs( evec[0][big] / norm ); |
---|
190 | nvec[1] = fabs( evec[1][big] / norm ); |
---|
191 | nvec[2] = fabs( evec[2][big] / norm ); |
---|
192 | } else { |
---|
193 | nvec[0] = nvec[1] = nvec[2] = 0.0; |
---|
194 | } /*endif*/ |
---|
195 | if (p != 1.) { |
---|
196 | nvec[0] = pow( nvec[0], p ); |
---|
197 | nvec[1] = pow( nvec[1], p ); |
---|
198 | nvec[2] = pow( nvec[2], p ); |
---|
199 | } /*endif*/ |
---|
200 | xo[mi] = xi[mi]*nvec[0]; |
---|
201 | yo[mi] = yi[mi]*nvec[1]; |
---|
202 | zo[mi] = zi[mi]*nvec[2]; |
---|
203 | } else { |
---|
204 | xo[mi] = 0.; |
---|
205 | yo[mi] = 0.; |
---|
206 | zo[mi] = 0.; |
---|
207 | } /*endif*/ |
---|
208 | } /*endfor*/ |
---|
209 | sy_sharecpu(); |
---|
210 | } /*endfor*/ |
---|
211 | |
---|
212 | } /* end of pf_vecfilter */ |
---|
213 | |
---|
214 | |
---|
215 | |
---|
216 | /*-----------------------------------------------------------------------*/ |
---|
217 | |
---|
218 | |
---|
219 | |
---|
220 | void pf_eigenvector( REAL xi[], REAL yi[], REAL zi[], REAL xo[], |
---|
221 | REAL yo[], REAL zo[], long lth, int n, REAL p, int cmreset, STATUS *status ) |
---|
222 | |
---|
223 | /* Returns normalized and weighted largest eigenvector for each sample position |
---|
224 | * |
---|
225 | * parameters of routine |
---|
226 | * REAL xi[], yi[], zi[]; input; 3-dim input seismogram |
---|
227 | * REAL xo[], yo[], zo[]; output; largest eigenvector |
---|
228 | * long lth; input; length of traces |
---|
229 | * int n; input; coherence length |
---|
230 | * REAL p; input; exponent of filter factor |
---|
231 | * int cmreset; input; the covariance matrix is |
---|
232 | * recomputed after cmreset steps |
---|
233 | * STATUS *status; output; return status |
---|
234 | */ |
---|
235 | { |
---|
236 | /* local variables */ |
---|
237 | long li, hi, mi; /* sample counter */ |
---|
238 | COVMTX cm; /* covariance matrix */ |
---|
239 | COVMTX lm; /* current matrix */ |
---|
240 | REAL fac; /* filter factor */ |
---|
241 | REAL l[MXC_DIM]; /* eigenvalues */ |
---|
242 | REAL evec[MXC_DIM][MXC_DIM]; /* eigenvectors */ |
---|
243 | int big; /* index of biggest eigenvalue */ |
---|
244 | int idx2, idx3; /* index of 2nd and 3rd largest eigenvector */ |
---|
245 | REAL nvec[MXC_DIM]; /* normalized eigenvector of biggest value */ |
---|
246 | REAL norm; /* normalization constant */ |
---|
247 | |
---|
248 | /* executable code */ |
---|
249 | |
---|
250 | pf_clrcm( cm ); |
---|
251 | for (li=(-n),hi=0; li<lth; li++,hi++) { |
---|
252 | if (li >= 0) { |
---|
253 | pf_buildcm( xi[li], yi[li], zi[li], lm ); |
---|
254 | pf_subcm( cm, lm ); |
---|
255 | } /*endif*/ |
---|
256 | if (hi < lth) { |
---|
257 | pf_buildcm( xi[hi], yi[hi], zi[hi], lm ); |
---|
258 | pf_addcm( cm, lm ); |
---|
259 | } /*endif*/ |
---|
260 | mi = (li+hi)/2; |
---|
261 | if (mi >=0 && mi < lth) { |
---|
262 | if ((mi+1) % cmreset == 0) /* recompute cm to avoid */ |
---|
263 | pf_calccm( xi, yi, zi, li>(-1) ? li+1 : 0, /* roundoff */ |
---|
264 | hi<lth ? hi : lth-1, cm ); |
---|
265 | pf_diagcm( cm, l, evec, &big, status ); |
---|
266 | if (Severe(status)) return; |
---|
267 | switch (big) { |
---|
268 | case 0: idx2 = 1; idx3 = 2; break; |
---|
269 | case 1: idx2 = 0; idx3 = 2; break; |
---|
270 | default: idx2 = 0; idx3 = 1; break; |
---|
271 | } /*endswitch*/ |
---|
272 | if (fabs(l[idx2]) < fabs(l[idx3])) idx2 = idx3; |
---|
273 | if (fabs(l[big]) > SHC_EPSILON) { |
---|
274 | /* eigenvector is evec[i][big], i=0,1,2 */ |
---|
275 | /* normalize eigenvector */ |
---|
276 | norm = sqrt( evec[0][big]*evec[0][big] + |
---|
277 | evec[1][big]*evec[1][big] + evec[2][big]*evec[2][big] ); |
---|
278 | if (norm > SHC_EPSILON) { |
---|
279 | nvec[0] = fabs( evec[0][big] / norm ); |
---|
280 | nvec[1] = fabs( evec[1][big] / norm ); |
---|
281 | nvec[2] = fabs( evec[2][big] / norm ); |
---|
282 | } else { |
---|
283 | nvec[0] = nvec[1] = nvec[2] = 0.0; |
---|
284 | } /*endif*/ |
---|
285 | /* weight eigenvecor by polarization */ |
---|
286 | norm = 1.0 - l[idx2]/l[big]; |
---|
287 | if (p != 1.) |
---|
288 | norm = pow( norm, p ); |
---|
289 | xo[mi] = norm * nvec[0]; |
---|
290 | yo[mi] = norm * nvec[1]; |
---|
291 | zo[mi] = norm * nvec[2]; |
---|
292 | } else { |
---|
293 | xo[mi] = 0.; |
---|
294 | yo[mi] = 0.; |
---|
295 | zo[mi] = 0.; |
---|
296 | } /*endif*/ |
---|
297 | } /*endfor*/ |
---|
298 | sy_sharecpu(); |
---|
299 | } /*endfor*/ |
---|
300 | |
---|
301 | } /* end of pf_eigenvector */ |
---|
302 | |
---|
303 | |
---|
304 | |
---|
305 | /*-----------------------------------------------------------------------*/ |
---|
306 | |
---|
307 | |
---|
308 | |
---|
309 | void pf_poldir( REAL xi[], REAL yi[], REAL zi[], REAL xo[], |
---|
310 | REAL yo[], REAL zo[], long lth, SAMPLE poldir[], REAL p ) |
---|
311 | |
---|
312 | /* computes scalar product of each data point of the 3-dim input trace |
---|
313 | * and a given vector poldir (both vectors are normalized before). The |
---|
314 | * data point then is weighted with the result powered by 'p'. |
---|
315 | * |
---|
316 | * parameters of routine |
---|
317 | * REAL xi[], yi[], zi[]; input; 3-dim input seismogram |
---|
318 | * REAL xo[], yo[], zo[]; output; filtered 3-dim seismogram |
---|
319 | * long lth; input; length of traces |
---|
320 | * int poldir[]; input; polarization direction |
---|
321 | * REAL p; input; exponent of filter factor |
---|
322 | */ |
---|
323 | { |
---|
324 | /* local variables */ |
---|
325 | REAL norm; /* normalization constant */ |
---|
326 | SAMPLE pol_z, pol_n, pol_e; /* normalized polarization vector */ |
---|
327 | SAMPLE cur_z, cur_n, cur_e; /* normalized observed vector */ |
---|
328 | long i; /* sample counter */ |
---|
329 | |
---|
330 | /* executable code */ |
---|
331 | |
---|
332 | /* normalize input vector */ |
---|
333 | norm = sqrt( poldir[0]*poldir[0] + poldir[1]*poldir[1] |
---|
334 | + poldir[2]*poldir[2] ); |
---|
335 | if (norm > SHC_EPSILON) { |
---|
336 | pol_z = poldir[0] / norm; |
---|
337 | pol_n = poldir[1] / norm; |
---|
338 | pol_e = poldir[2] / norm; |
---|
339 | } else { |
---|
340 | pol_z = pol_n = pol_e = 0.0; |
---|
341 | } /*endif*/ |
---|
342 | |
---|
343 | for (i=0; i<lth; i++) { |
---|
344 | |
---|
345 | norm = sqrt( xi[i]*xi[i] + yi[i]*yi[i] + zi[i]*zi[i] ); |
---|
346 | if (norm > SHC_EPSILON) { |
---|
347 | cur_z = xi[i] / norm; |
---|
348 | cur_n = yi[i] / norm; |
---|
349 | cur_e = zi[i] / norm; |
---|
350 | } else { |
---|
351 | cur_z = cur_n = cur_e = 0.0; |
---|
352 | } /*endif*/ |
---|
353 | |
---|
354 | /* compute powered scalar product */ |
---|
355 | norm = fabs( cur_z*pol_z + cur_n*pol_n + cur_e*pol_e ); |
---|
356 | if (p != 1.0) norm = pow( norm, p ); |
---|
357 | |
---|
358 | xo[i] = xi[i] * norm; |
---|
359 | yo[i] = yi[i] * norm; |
---|
360 | zo[i] = zi[i] * norm; |
---|
361 | |
---|
362 | } /*endfor*/ |
---|
363 | |
---|
364 | } /* end of pf_poldir */ |
---|
365 | |
---|
366 | |
---|
367 | |
---|
368 | /*-----------------------------------------------------------------------*/ |
---|
369 | |
---|
370 | |
---|
371 | |
---|
372 | void pf_bazdir( REAL xi[], REAL yi[], REAL zi[], REAL xo[], |
---|
373 | REAL yo[], REAL zo[], long lth, REAL baz, REAL p ) |
---|
374 | |
---|
375 | /* computes scalar product of each data point of the N,E input trace |
---|
376 | * and a given back-azimuth (both vectors are normalized before). The |
---|
377 | * 3-dim data point then is weighted with the result powered by 'p'. |
---|
378 | * |
---|
379 | * parameters of routine |
---|
380 | * REAL xi[], yi[], zi[]; input; 3-dim input seismogram |
---|
381 | * REAL xo[], yo[], zo[]; output; filtered 3-dim seismogram |
---|
382 | * long lth; input; length of traces |
---|
383 | * REAL baz; input; back-azimuth in deg |
---|
384 | * REAL p; input; exponent of filter factor |
---|
385 | */ |
---|
386 | { |
---|
387 | /* local variables */ |
---|
388 | REAL norm; /* normalization constant */ |
---|
389 | SAMPLE pol_n, pol_e; /* normalized polarization vector */ |
---|
390 | SAMPLE cur_n, cur_e; /* normalized observed vector */ |
---|
391 | long i; /* sample counter */ |
---|
392 | |
---|
393 | /* executable code */ |
---|
394 | |
---|
395 | /* get 2-dim input vector */ |
---|
396 | pol_n = cos( baz/SHC_RAD_TO_DEG ); |
---|
397 | pol_e = sin( baz/SHC_RAD_TO_DEG ); |
---|
398 | |
---|
399 | for (i=0; i<lth; i++) { |
---|
400 | |
---|
401 | norm = sqrt( yi[i]*yi[i] + zi[i]*zi[i] ); |
---|
402 | if (norm > SHC_EPSILON) { |
---|
403 | cur_n = yi[i] / norm; |
---|
404 | cur_e = zi[i] / norm; |
---|
405 | } else { |
---|
406 | cur_n = cur_e = 0.0; |
---|
407 | } /*endif*/ |
---|
408 | |
---|
409 | /* compute powered scalar product */ |
---|
410 | norm = fabs( cur_n*pol_n + cur_e*pol_e ); |
---|
411 | if (p != 1.0) norm = pow( norm, p ); |
---|
412 | |
---|
413 | xo[i] = xi[i] * norm; |
---|
414 | yo[i] = yi[i] * norm; |
---|
415 | zo[i] = zi[i] * norm; |
---|
416 | |
---|
417 | } /*endfor*/ |
---|
418 | |
---|
419 | } /* end of pf_bazdir */ |
---|
420 | |
---|
421 | |
---|
422 | |
---|
423 | /*-----------------------------------------------------------------------*/ |
---|
424 | |
---|
425 | |
---|
426 | |
---|
427 | static void pf_addcm( COVMTX a, COVMTX b ) |
---|
428 | |
---|
429 | /* adds matrix b to a |
---|
430 | * |
---|
431 | * parameters of routine |
---|
432 | * COVMTX a; modify; b is added to this matrix |
---|
433 | * COVMTX b; input; to be added |
---|
434 | */ |
---|
435 | { |
---|
436 | /* local variables */ |
---|
437 | int m; /* element counter */ |
---|
438 | |
---|
439 | /* executable code */ |
---|
440 | |
---|
441 | for (m=0; m<COVMTXLTH; m++) |
---|
442 | a[m] += b[m]; |
---|
443 | |
---|
444 | } /* end of pf_addcm */ |
---|
445 | |
---|
446 | |
---|
447 | |
---|
448 | /*-----------------------------------------------------------------------*/ |
---|
449 | |
---|
450 | |
---|
451 | |
---|
452 | static void pf_subcm( COVMTX a, COVMTX b ) |
---|
453 | |
---|
454 | /* subtracts matrix b from a |
---|
455 | * |
---|
456 | * parameters of routine |
---|
457 | * COVMTX a; modify; b is subtracted from this matrix |
---|
458 | * COVMTX b; input; to be subtracted |
---|
459 | */ |
---|
460 | { |
---|
461 | /* local variables */ |
---|
462 | int m; /* element counter */ |
---|
463 | |
---|
464 | /* executable code */ |
---|
465 | |
---|
466 | for (m=0; m<COVMTXLTH; m++) |
---|
467 | a[m] -= b[m]; |
---|
468 | |
---|
469 | } /* end of pf_subcm */ |
---|
470 | |
---|
471 | |
---|
472 | |
---|
473 | /*-----------------------------------------------------------------------*/ |
---|
474 | |
---|
475 | |
---|
476 | |
---|
477 | static void pf_clrcm( COVMTX a ) |
---|
478 | |
---|
479 | /* resets matrix a |
---|
480 | * |
---|
481 | * parameters of routine |
---|
482 | * COVMTX a; output; to be reset |
---|
483 | */ |
---|
484 | { |
---|
485 | /* local variables */ |
---|
486 | int m; /* element counter */ |
---|
487 | |
---|
488 | /* executable code */ |
---|
489 | |
---|
490 | for (m=0; m<COVMTXLTH; m++) |
---|
491 | a[m] = 0.; |
---|
492 | |
---|
493 | } /* end of pf_clrcm */ |
---|
494 | |
---|
495 | |
---|
496 | |
---|
497 | /*-----------------------------------------------------------------------*/ |
---|
498 | |
---|
499 | |
---|
500 | |
---|
501 | static void pf_buildcm( REAL x, REAL y, REAL z, COVMTX a ) |
---|
502 | |
---|
503 | /* computes covariance matrix from 3-dim point coordinates |
---|
504 | * |
---|
505 | * parameters of routine |
---|
506 | * REAL x, y, z; input; coordinates of point |
---|
507 | * COVMTX a; output; to be reset |
---|
508 | */ |
---|
509 | { |
---|
510 | /* executable code */ |
---|
511 | |
---|
512 | a[XX] = x*x; |
---|
513 | a[XY] = x*y; a[YY] = y*y; |
---|
514 | a[XZ] = x*z; a[YZ] = y*z; a[ZZ] = z*z; |
---|
515 | |
---|
516 | } /* end of pf_buildcm */ |
---|
517 | |
---|
518 | |
---|
519 | |
---|
520 | /*-----------------------------------------------------------------------*/ |
---|
521 | |
---|
522 | |
---|
523 | |
---|
524 | static void pf_calccm( REAL x[], REAL y[], REAL z[], long li, |
---|
525 | long hi, COVMTX c ) |
---|
526 | |
---|
527 | /* computes covariance matrix in sample window li..hi (inclusive |
---|
528 | * both sample bounds) |
---|
529 | * |
---|
530 | * parameters of routine |
---|
531 | * REAL x[], y[], z[]; input; seismogram |
---|
532 | * long li, hi; input; sample window |
---|
533 | * COVMTX c; output; covariance matrix |
---|
534 | */ |
---|
535 | { |
---|
536 | /* local variables */ |
---|
537 | long i; /* sample counter */ |
---|
538 | COVMTX lc; /* dyade */ |
---|
539 | |
---|
540 | /* executable code */ |
---|
541 | |
---|
542 | pf_clrcm( c ); |
---|
543 | for (i=li; i<=hi; i++) { |
---|
544 | pf_buildcm( x[i], y[i], z[i], lc ); |
---|
545 | pf_addcm( c, lc ); |
---|
546 | } /*endif*/ |
---|
547 | |
---|
548 | } /* end of pf_calccm */ |
---|
549 | |
---|
550 | |
---|
551 | |
---|
552 | /*-----------------------------------------------------------------------*/ |
---|
553 | |
---|
554 | |
---|
555 | static void pf_evalcm( COVMTX c, REAL *l1, REAL *l2, REAL *l3 ) |
---|
556 | |
---|
557 | /* computes eigenvalues of matrix a |
---|
558 | * |
---|
559 | * parameters of routine |
---|
560 | * COVMTX c; input; covariance matrix to be diagonalized |
---|
561 | * REAL *l1, *l2, *l3; output; eigenvalues |
---|
562 | */ |
---|
563 | { |
---|
564 | /* local variables */ |
---|
565 | REAL cp0, cp1, cp2; /* coefficients of characteristic polynomial */ |
---|
566 | REAL p, q; /* corefficients of reduced equation */ |
---|
567 | REAL D; /* discriminante */ |
---|
568 | REAL rho, phi; /* scratch */ |
---|
569 | |
---|
570 | /* executable code */ |
---|
571 | |
---|
572 | /* characteristic polynomial: p(l) = l^3 + cp2*l^2 + cp1*l + cp0 */ |
---|
573 | cp2 = -c[XX] - c[YY] - c[ZZ]; |
---|
574 | cp1 = c[XX]*c[YY] + c[XX]*c[ZZ] + c[YY]*c[ZZ] - |
---|
575 | c[XY]*c[XY] - c[XZ]*c[XZ] - c[YZ]*c[YZ]; |
---|
576 | cp0 = c[XX]*c[YZ]*c[YZ] + c[YY]*c[XZ]*c[XZ] + c[ZZ]*c[XY]*c[XY] - |
---|
577 | c[XX]*c[YY]*c[ZZ] - 2.0*c[XY]*c[YZ]*c[XZ]; |
---|
578 | |
---|
579 | cp2 /= 3.; |
---|
580 | |
---|
581 | /* reduced equation: l^3 + p*l + q = 0 */ |
---|
582 | p = cp1 - 3.*cp2*cp2; |
---|
583 | q = 2.*cp2*cp2*cp2 - cp2*cp1 + cp0; |
---|
584 | if (p > 0.) {p = -p; printf( "*** this cannot happen ***\n" );} |
---|
585 | |
---|
586 | rho = sqrt( -p ); |
---|
587 | rho = rho*rho*rho/5.1961524; /* sqrt(27.) */ |
---|
588 | D = (rho > SHC_EPSILON) ? -q/(2.*rho) : 0.; |
---|
589 | if (D > 1.) D = 1.; |
---|
590 | if (D < -1.) D = -1.; |
---|
591 | phi = acos( D ); |
---|
592 | |
---|
593 | /* compute eigenvalues */ |
---|
594 | D = (rho > 0.) ? 2.*pow(rho,1./3.) : 0.; |
---|
595 | phi /= 3.; |
---|
596 | *l1 = D * cos(phi); |
---|
597 | *l2 = D * cos(phi+2.*SHC_PI/3.); |
---|
598 | *l3 = D * cos(phi+4.*SHC_PI/3.); |
---|
599 | |
---|
600 | /* undo reduction */ |
---|
601 | *l1 -= cp2; |
---|
602 | *l2 -= cp2; |
---|
603 | *l3 -= cp2; |
---|
604 | |
---|
605 | /* sort ev's by size */ |
---|
606 | if (*l1 < *l2) {D = *l2; *l2 = *l1; *l1 = D;} |
---|
607 | if (*l2 < *l3) {D = *l3; *l3 = *l2; *l2 = D;} |
---|
608 | if (*l1 < *l2) {D = *l2; *l2 = *l1; *l1 = D;} |
---|
609 | |
---|
610 | } /* end of pf_evalcm */ |
---|
611 | |
---|
612 | |
---|
613 | |
---|
614 | /*-----------------------------------------------------------------------*/ |
---|
615 | |
---|
616 | |
---|
617 | |
---|
618 | static void pf_diagcm( COVMTX c, REAL l[MXC_DIM], |
---|
619 | REAL trafo[MXC_DIM][MXC_DIM], int *big, STATUS *status ) |
---|
620 | |
---|
621 | /* Returns eiganvalues and eigenvectors of symmetrical matrix c. |
---|
622 | * |
---|
623 | * parameters of routine |
---|
624 | * COVMTX c; input; covariance matrix |
---|
625 | * REAL l[MXC_DIM]; output; eigenvalues |
---|
626 | * REAL trafo[MXC_DIM][MXC_DIM]; output; eigenvectors |
---|
627 | * int *big; output; index of biggest value |
---|
628 | * STATUS *status; output; return status |
---|
629 | */ |
---|
630 | { |
---|
631 | /* local variables */ |
---|
632 | REAL sym_m[MXC_DIM][MXC_DIM]; /* symmetric input matrix */ |
---|
633 | |
---|
634 | /* executable code */ |
---|
635 | |
---|
636 | /* create input matrix */ |
---|
637 | sym_m[0][0] = c[XX]; sym_m[0][1] = c[XY]; sym_m[0][2] = c[XZ]; |
---|
638 | sym_m[1][0] = c[XY]; sym_m[1][1] = c[YY]; sym_m[1][2] = c[YZ]; |
---|
639 | sym_m[2][0] = c[XZ]; sym_m[2][1] = c[YZ]; sym_m[2][2] = c[ZZ]; |
---|
640 | |
---|
641 | /* diagonalize */ |
---|
642 | mx_diag_matrix( sym_m, l, trafo, status ); |
---|
643 | |
---|
644 | /* find biggest eigenvalue */ |
---|
645 | *big = 0; |
---|
646 | if (l[1] > l[*big]) *big = 1; |
---|
647 | if (l[2] > l[*big]) *big = 2; |
---|
648 | |
---|
649 | } /* end of pf_diagcm */ |
---|
650 | |
---|
651 | |
---|
652 | |
---|
653 | /*-----------------------------------------------------------------------*/ |
---|